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Abstract— This paper investigates the problem of composing
multiple control barrier functions (CBFs)—and matrix control
barrier functions (MCBFs)—through logical and combinato-
rial operations. Standard CBF formulations naturally enable
conjunctive (AND) combinations, but disjunctive (OR) and
more general logical structures introduce nonsmoothness and
possibly a combinatorial blow-up in the number of logical
combinations. We introduce the framework of combinatorial
CBFs that addresses p-choose-r safety specifications and their
nested composition. The proposed framework ensures safety for
the exact safe set in a scalable way, using the original number
of primitive constraints. We establish theoretical guarantees on
safety under these compositions, and we demonstrate their use
on a patrolling problem in a multi-agent system.

I. INTRODUCTION

Ensuring dynamic safety in modern control systems has
become essential in applications such as robotics, au-
tonomous vehicles, and aerospace systems. Control barrier
functions (CBFs) [1] provide one of the most widely used
tools for addressing safety. They were arguably popularized
through their ability to be framed as safety filters using
the quadratic program (QP) formulation [2]. The resulting
optimization-based controllers facilitate the combination of
multiple Lyapunov and barrier constraints to handle stability
and safety simultaneously. This divide-and-conquer approach
has been a key to the practical adoption of CBFs, making it
straightforward to handle multiple control criteria.

As safety has taken on greater importance, many works,
such as [3]–[5], have extended the QP formulation to inte-
grate multiple CBFs simultaneously. While the optimization
framework facilitates such integration, it also requires a
verification on compatibility: even when each CBF admits
a safeguarding control, there may not be one in conjunction.
This issue has motivated studies on compatibility of multiple
CBFs [6] and methods for ensuring feasibility of controllers
with multiple CBFs [7], [8]. In certain cases, such as parallel
safe set boundaries or box constraints, compatibility can
be guaranteed [9], [10]. Nevertheless, the majority of these
works remains limited to simple conjunctive combinations of
CBFs, whereas practical systems often require richer logical
structures among safety constraints.
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Fig. 1. An example of a p-choose-r constraint in multi-drone surveillance.

Prior work on the composition of CBFs has largely fo-
cused on combining them into a single function and treating
the result as a new CBF. For instance, the works [5], [11]
perform AND/OR composition of CBFs through min/max
functions and deal directly with the resulting nonsmooth
barrier function. This formulation has been applied to marine
vehicle applications [12]. Since nonsmooth functions are
difficult to handle in general, other works approximate them
with smooth functions such as softmin/softmax [13]–[15],
enabling applications to quadrotors [16] and safe reinforce-
ment learning [17]. This approach has been later extended
to handle hierarchical complex objectives [18]. Another line
of work combines CBFs through signal temporal logic [19],
[20]. More recently, matrix-valued CBFs [21] have been pro-
posed as a way to capture logical combinations. Despite this
progress, the existing literature remains focused on Boolean
(AND/OR) combinations of safety constraints. In contrast,
here we consider the more general case of combinatorial
compositions, safety specifications that commonly arise in
fault-tolerant and multi-agent systems (see, e.g., Fig. 1). Our
approach builds on the matrix CBF perspective of using
multiple inequality constraints rather than a single one. We
summarize our contributions next.

In this paper, we go beyond the Boolean compositions
studied in prior works and develop a framework for the
combinatorial composition of CBFs. We introduce the notion
of p-choose-r CBFs that address safety problems where at
least r out of p constraints must hold. These CBFs are
defined based on sorting individual primitive constraints and
they serve as pivots in the barrier conditions. Like in the
standard AND case, our method enforces safety through mul-
tiple inequalities involving the primitive CBFs, which allows
us to avoid nonsmoothness issues present in formulations
based on nonsmooth min/max operators. In addition, the
sorting and pivoting arguments extend naturally to nested



logical structures, while ensuring that the number of barrier
conditions remains equal to the number of primitive CBFs,
despite the combinatorial nature of the safe set composition.
Moreover, unlike approaches using smooth relaxation, our
method preserves the safe set exactly as specified by the
logical combinations. We demonstrate the flexibility and
scalability of the framework on a multi-agent patrolling task.

II. BACKGROUND

A. Control barrier functions

Consider the control-affine system1:

ẋ = f(x) + g(x)u (1)

with state x ∈ Rn and control input u ∈ Rm. The system
drift f : Rn → Rn and the control matrix g : Rn → Rm×n

are assumed continuous. Then, if the control signal t 7→ u(t)
is continuous, there exists a continuously differentiable solu-
tion t 7→ x(t) to the system (1). We are interested in ensuring
any solution x(t) evolves within a safety constraint C ⊂ Rn.

In simpler problems, the safety constraint is given by a sin-
gle continuously differentiable scalar function h : Rn → R:

C =
{
x ∈ Rn | h(x) ≥ 0

}
. (2)

Then, one may address safety using control barrier functions.

Definition 1. (Control Barrier Function, [2]): A continu-
ously differentiable function h : Rn → R is a control barrier
function (CBF) for (1) if there exists α ∈ Ke such that, for
each x in the set C in (2), there exists u ∈ Rm satisfying:

ḣ(x,u) ≜ Lfh(x) +

m∑
i=1

Lgi
h(x)ui > −α(h(x)). (3)

When h is a CBF, we may find a control signal that keeps
the set C safe, such that x(0) ∈ C =⇒ x(t) ∈ C for all time,
addressing our safety problem2. One way to design a safe
control signal is via optimization. Given p CBFs, denoted
by {hk}pk=1, the corresponding constraints can be addressed
simultaneously with an optimization-based controller:

k(x) = argmin
u∈Rm

∥u− kd(x)∥2 (4)

s.t. ḣk(x,u) ≥ −α(hk(x)), ∀k ∈ [p],

that changes a desired controller kd into a safe controller k.
One advantage of CBFs is their flexibility to account

for multiple safety constraints: the CBF-based quadratic
programming (CBF-QP) framework above enables a simple

1For a positive integer p, we denote the set of consecutive numbers as
[p] = {1, 2, . . . , p}. The set of symmetric matrices in Rp×p is denoted by
Sp, and Ip is the p× p identity matrix. For a continuously differentiable
function h : Rn → R with a vector field f : Rn → Rn, we define the
Lie derivative Lfh(x) =

∂h
∂x

(x) · f(x). For a continuously differentiable
matrix-valued function H : Rn → Sp, the Lie derivative LfH is defined
element-wise: LfHij(x) =

∂Hij

∂x
(x) · f(x) where Hij is the (i, j)-th

entry of matrix H. Function α : (−b, a) → R, a, b > 0 is of extended
class-K (α ∈ Ke) if it is continuous, strictly increasing, and α(0) = 0.

2Generally, the safety problem is addressed by finding a CBF h that
defines a safe set C that is a subset of the actual safety constraint.

integration of multiple CBFs, addressing conjunctive (AND)
combination between them. In this case, we note:

x∈
⋂p

k=1Ck ⇐⇒ x∈C1 AND x∈C2 . . . AND x∈Cp,⋂p
k=1Ck =

{
x ∈ Rn | min{hk(x)}pk=1 ≥ 0

}
,

(5)

suggesting the formulation renders the intersection of the sets
forward invariant, assuming that the CBFs are compatible
and the optimization is feasible for all x in the set.

This paper investigates logical combinations of constraints
beyond AND. Despite the simplicity in dealing with AND
combinations, other types like disjunctive (OR) and more
complex logical combinations are difficult to handle. For
example, OR logic encodes the union of safety constraints:

x∈
⋃p

k=1Ck ⇐⇒ x∈C1 OR x∈C2 . . . OR x∈Cp,⋃p
k=1Ck =

{
x ∈ Rn | max{hk(x)}pk=1 ≥ 0

}
.

(6)

While the AND and OR combinations of safety constraints
can be described using the min and max functions, these
lead to nonsmooth barrier functions [11] and potentially
discontinuous controllers if used directly in optimization.

B. Matrix control barrier functions

Matrix control barrier functions (MCBFs) can characterize
nonsmooth safe sets from logical compositions between
CBFs. Consider the safety constraint defined by a contin-
uously differentiable matrix-valued function H : Rn → Sp:

C =
{
x ∈ Rn | H(x) ⪰ 0

}
. (7)

In contrast to sets defined by scalar-valued functions, the set
above can potentially be nonsmooth. Analogous to CBFs,
the previous work [21] provides the definition for MCBFs.

Definition 2. (Matrix CBF, [21]): A continuously differ-
entiable function H : Rn → Sp is a matrix control barrier
function (MCBF) for (1) if there exists α ∈ Ke such that, for
each x in the set C in (7), there exists u ∈ Rm satisfying:

Ḣ(x,u) ≜ LfH(x) +

m∑
i=1

LgiH(x)ui ≻ −α(H(x)), (8)

where the matrix function α : Sp → Sp applies α on the
eigenvalues of H while keeping the eigenspaces the same.

We can use MCBFs to enforce safety by posing an
optimization problem like (4). In this case, the constraint (8)
(with a positive semidefinite inequality, ⪰) renders the opti-
mization a semidefinite programming (CBF-SDP).

By enforcing H to be positive semidefinite, we effectively
ensure that all of its eigenvalues are positive at all times. We
consider the eigenvalues in ascending order:

λ1(x) ≤ · · · ≤ λp(x).

For diagonal matrices, the eigenvalues are the diagonal
entries. Thus, when H(x) = diag({hk(x)}pk=1) is the diag-
onalization of p CBFs, the CBF-SDP makes all {hk(x)}pk=1

remain nonnegative as in (5). In this formulation, the con-
straint derived from the MCBF is equivalent to the inequali-
ties in (4), addressing the AND composition between CBFs.



The work [21] also addresses another type of safe sets:

C =
{
x ∈ Rn | H(x) ̸≺ 0

}
=

{
x ∈ Rn | λp(x) ≥ 0

}
(9)

and proposes the following framework.

Definition 3. (Indefinite-MCBF, [21]): A continuously dif-
ferentiable function H : Rn → Sp is an indefinite matrix
control barrier function (Indefinite-MCBF) for (1) if there
exists α ∈ Ke and c⊥ ≥ 0 such that, for each x in the set C
in (9), there exists u ∈ Rm satisfying:

Ḣ(x,u) ≻ −α
(
λp(x)

)
Ip − c⊥

(
λp(x)Ip−H(x)

)
. (10)

While the motivation of indefinite-MCBF was to address
safe sets that are negations of semidefinite constraints,
enabling applications like obstacle avoidance, the frame-
work can also address OR combinations between scalar
CBFs. When a diagonal matrix H(x) = diag({hk(x)}pk=1)
is constructed, the Indefinite-MCBF enforces positivity of
the maximal CBF hmax(x) = λp(x). Furthermore, when the
condition in (10) is diagonal, the corresponding CBF-SDP
can be equivalently reformulated into a CBF-QP.

In this paper, we build on the observations on how we
can address OR combinations through sorting CBFs, and we
generalize the method for addressing p-choose-r constraints
that, to the best of our knowledge, have not yet been studied.

III. COMBINATORIAL CONTROL BARRIER FUNCTIONS

Next, we address combinatorial safety constraints. Pro-
vided p constraints, we enforce that at least r constraints
are satisfied at all times (where r ≤ p), regardless of which
constraints. We call this a p-choose-r safety requirement
(with a slight abuse of the more precise term p-choose-
at-least-r). Such compositional structures naturally arise,
for example, when defining safe sets through unions and
intersections (OR/AND logic, cf. Example 1) or in fault-
tolerant and multi-agent settings where only a subset of com-
ponents must satisfy a safety condition (Example 2). In these
cases, simply neglecting the temporarily inactive constraints
can cause control discontinuities, motivating our continuous
solution below. Our proposed CBF formulation guarantees
the satisfaction of p-choose-r conditions while avoiding the
combinatorial blow-up in the number of combinations.

Consider p safety constraints in the form hk(x) ≥ 0, given
by functions {hk}pk=1. To satisfy at least r out of these
p constraints, hk(x) ≥ 0 must hold for the r-th largest hk

value, which is also the (p−r+1)-th smallest hk, denoted by:

h(x) =
r

max{hk(x)}pk=1 =
p−r+1

min {hk(x)}pk=1. (11)

Then, the safe set C is defined as in (2). Note that the special
cases p-choose-p and p-choose-1 are equivalent to the AND
and OR combination of safety constraints in (5)-(6), that is,
maxp and max1 simplify to min and max, respectively.

Example 1. (p-choose-r Constraints): Figure 2 exemplifies
safe sets in two dimensions obtained from p-choose-r com-
positions. The corner in Fig. 2(a) is a 2-choose-1 constraint:

h(x) =
1

max{hk(x)}2k=1 = max{h1(x), h2(x)}, (12)
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Fig. 2. Examples of safe sets defined by the logic: (a) 2-choose-1, (b) 4-
choose-4, (c) 4-choose-3, and (d) 2-choose-2 of 4-choose-4 and 2-choose-1.

encoding that at least one of the two constraints must be
satisfied, hence the safe set is the union of two half spaces.
The rectangle in Fig. 2(b) implies a 4-choose-4 constraint:

h(x)=
4

max{hk(x)}4k=1=min{h1(x), h2(x), h3(x), h4(x)},
(13)

respecting all four boundaries and creating the intersection
of four half spaces. Meanwhile, a 4-choose-3 composition:

h(x) =
3

max{hk(x)}4k=1, (14)

captures the cross-shaped region in Fig. 2(c) where at least
three out of four constraints hold. •

Inspired by the previous result, we establish the concept of
combinatorial CBFs to address p-choose-r safety constraints.

Definition 4. (Combinatorial CBF): A function h : Rn → R
constructed from sorting CBFs {hk}pk=1 as in (11) is a
combinatorial control barrier function (p-choose-r CBF)
for (1) if there exists α ∈ Ke such that, for each x in the set
C in (2), there exists u ∈ Rm satisfying:

ḣk(x,u) > −α
(
h(x) + |hk(x)− h(x)|

)
, ∀k ∈ [p]. (15)

The intuition behind the p-choose-r CBF h is that we
always ensure that the r-th largest hk value, which we refer
to as the pivot, remains nonnegative. While the absolute value
term in (15) allows hk values smaller than h to become
negative, it also guarantees that the r-th largest hk, and thus
at least r out of the p functions {hk}pk=1, remain nonnegative.

A p-choose-r CBF enables the following safety result.

Theorem 1. (Combinatorial Safety): Consider the sys-
tem (1). Let h be constructed from a combination of primitive
CBFs {hk}pk=1 as in (11). If h is a p-choose-r CBF for (1),
then the set C in (2) is control invariant (safe).

In addition, any state feedback controller k : Rn → Rm,
u = k(x), that is continuous and satisfies:

ḣk(x,k(x)) ≥ −α
(
h(x) + |hk(x)− h(x)|

)
, ∀k ∈ [p] (16)

on a neighborhood D ⊃ C, renders the set C forward invari-
ant and ensures the bounds:

d

dt

( j
max{hk(x(t)}pk=1

)
≥ −α

( j
max{hk(x(t)}pk=1

)
(17)

for all j ≥ r at almost every time t ≥ 0. Consequently, for
any initial condition x0 ∈ C, there exist at least r indices
k ∈ [p] at almost every time t ≥ 0 such that hk(x(t)) ≥ 0.

In particular, the following CBF-QP:

k(x) = argmin
u∈Rm

∥u− kd(x)∥2 (18)

s.t. ḣk(x,u) ≥ −α
(
h(x) + |hk(x)− h(x)|

)
, ∀k ∈ [p]



is a continuous controller satisfying (16).

Proof. Because each maxj{hk(x)}pk=1 is nonsmooth, the
proof relies on nonsmooth barrier function theory. In par-
ticular, let Kj(x) =

{
k ∈ [p] | hk(x) = maxj{hk(x)}pk=1

}
be the set of indices of CBFs with the same value as the
function of interest. Then we have the subgradient [22]:

∂
( j
max{hk(x)}pk=1

)
= co

⋃
k∈Kj(x)

{
∂hk

∂x
(x)

}
=⇒ d

dt

( j
max{hk(x(t)}pk=1

)
∈ co

⋃
k∈Kj(x)

{ḣk(x(t),u(t))}.

The implication above follows from the nonsmooth chain
rule [22, Thm. 2.3.10] (see also, [11]). Then we note the
inequalities in (16) enforce for every k ∈ Kj(x):

ḣk(x(t),u(t)) ≥ −α(hk(x(t)))

when j ≥ r, from the definition of the sorting operator maxj .
Hence, the bounds given in (17) follow.

Furthermore, when considering the case j = r, we derive:

⟨ξ, f(x) + g(x)k(x)⟩ ≥ −α(
r

max{hk(x)}pk=1),

for all ξ ∈ ∂
(
maxr{hk(x)}pk=1

)
on the neighborhood D.

The function maxr{hk(x)}pk=1 is therefore a nonsmooth
barrier function [11, Prop. 2] for the closed-loop system,
verifying the statement of forward invariance.

To prove control invariance, we show that the CBF-QP
is a valid safeguarding controller. The definition of the p-
choose-r CBFs using strict inequality in (15) ensures that
the CBF-QP satisfies Slater’s condition at every state x in a
neighborhood D ⊃ C of the safe set, so it is well-defined and
continuous there [23]. In addition, the CBF-QP enforces (16)
from its constraint, so we may deduce safety.

Theorem 1 provides the CBF-QP for p-choose-r CBFs.
An important feature of this construction is that the number
of inequalities in the optimization remains p regardless of r.
This avoids the combinatorial blow-up in the numbers of con-
straint combinations, yielding a more practical complexity
that scales linearly with p. This is achieved by sorting the hk

values in (11) to obtain h and then using h as pivot in (16) to
enforce constraints only for the r largest hk. The bound (17)
ensures forward invariance with the ordered CBFs rather than
the individual primitive CBFs, allowing the active subset of
r constraints to change dynamically over time. While it may
appear natural to apply the CBF condition directly to the r-
th largest function (i.e., use ḣ ≥ −α(h)), such an approach
involves the derivative of a nonsmooth function, leading to
a discontinuous CBF-QP, unlike our proposed framework.
Moreover, notice that p-choose-r CBFs define exact safe sets,
avoiding conservatism introduced by smooth approximations
of h using softmin or softmax operators as done in [13]–[15].

Similar to the case of multiple CBFs in (4), the feasi-
bility of constraint (16) is not automatically guaranteed for
CBFs hk, but it requires h to be a p-choose-r CBF. For
instance, in the AND setting (p-choose-p), the existence

of a safe input u is only guaranteed individually for each
CBF hk, while joint feasibility needs to be verified, i.e.,
h must be a p-choose-p CBF. This remains an active area
of research in the CBF literature. In the p-choose-r setting,
the situation is subtler: condition (15) must hold even when
some hk(x) < 0, i.e., outside the associated set. There,
the absolute value term helps relax this requirement. In
principle, the absolute value can be replaced by any positive
definite function to help address feasibility and compatibility
issues, but this choice recovers the standard AND case when
h(x) = min{hk(x)}pk=1 and yields the bounds in (17). A full
characterization of feasibility is a part of our future work.

Remark 1 (Task Assignment in Multi-Agent Systems). A
key motivation for p-choose-r CBFs arises in multi-agent
systems. In many settings, safety constraints apply to each
agent independently, but the mission requirements involve
only subsets of the agents. For instance, in a surveillance
task, the collective objective may be to ensure that a sensitive
region is not left unattended, and it is sufficient that at least
r agents remain within the region. Indeed, while mission
planning typically handles such task allocation decisions,
embedding this logic into combinatorial CBFs enhances
safety assurance at the faster control layer, complementing
the slower and more uncertainty-prone planning layer. In
addition, unlike the single-agent case, feasibility and compat-
ibility are less problematic here since the agents’ dynamics
and control inputs are decoupled, allowing the constraints
to be satisfied in parallel. The following example uses a p-
choose-r CBF in a multi-agent task assignment scenario. •

Example 2. (Surveillance Task): Consider a circular region
shown in Fig. 1 and a system of p = 3 robots with dynamics:

ẋk = uk, k ∈ [p].

We can use a p-choose-r CBF to assign at least r = 2 robots
out of p = 3 to remain inside the circle at all times. Define
the state x = [x⊤

1 x⊤
2 . . . x⊤

p ]
⊤ and the following functions:

hk(x) = R2 − ∥c− xk∥2, k ∈ [p],

h(x) =
r

max{hk(x)}pk=1.

where R and c are the radius and the center of the region.
Each function hk(x) ≥ 0 indicates that the robot k lies inside
the circle, so h(x) is a p-choose-r CBF which is nonnegative
if and only if at least r robots are inside the circle. •

IV. NESTED LOGIC FOR SAFETY CONSTRAINTS

We now extend our framework to handle nested combina-
torial safety constraints, where multiple combinatorial CBFs
are composed hierarchically. This generalization builds on
the same sorting and pivoting arguments used for p-choose-r
CBFs, but applied recursively to follow the nested structure.
The resulting formulation encodes the overall safety require-
ment through a single pivot safety function h, which plays
the role of the effective barrier function for the nested logic.

For simplicity, we first focus on two-level nested logic.
Consider a p2-choose-r2 combination of multiple p1i -choose-
r1i combinations among some i-th subset of primitive CBFs



{hk}pk=1. Note carefully that the superscripts on p’s and r’s
indicate the nested level of the logical combinations, rather
than exponentiation. We define the safe set C as in (2) with:

h1
i (x) =

r1i
max{hk(x)}k∈Ii , i ∈ [p2],

h(x) =
r2

max{h1
k(x)}

p2

k=1,

(19)

where Ii denote the indices of the p1i constraints that are
combined through the p1i -choose-r1i logic. Here, we reveal
that the nested logic is a logical combination of combinatorial
CBFs {h1

k}
p2

k=1. We provide the following concrete example.

Example 3. (Nested Constraints): Consider the L-shaped
region in Fig. 2(d) that is the intersection of the rectangle
in Fig. 2(b) and the corner in Fig. 2(a). The L-shape is
described by a 2-choose-2 (AND) combination of a 4-
choose-4 constraint (rectangle) and a 2-choose-1 (corner):

h1
1(x) =

4
max{hk(x)}4k=1, h1

2(x) =
1

max{hk(x)}6k=5,

h(x) =
2

max{h1
k(x)}2k=1, (20)

see (13) and (12) in Example 1. •

Naively, one would deal with the two-level nested logic
with inequalities making h a p2-choose-r2 CBF of {h1

k}
p2

k=1:

ḣ1
k(x,u) > −α

(
h(x) + |h1

k(x)− h(x)|
)
, ∀k ∈ [p2].

However, the main concern here is the nonsmoothness as-
sociated with h1

k. We can avoid this issue by applying the
barrier condition in (16) directly on the primitive functions,
like for one-level logical combinations. Intuitively, while h1

k

is nonsmooth, its derivative ḣ1
k remains a convex combination

of some primitive ḣk’s. Therefore, by enforcing (16) on
all primitives, we implicitly enforce the desired inequalities
above, rendering h a p2-choose-r2 CBF of {h1

k}
p2

k=1. In other
words, the one-level barrier conditions in (16) extend directly
to the two-level case, with the only change being how h is
defined. This observation generalizes by induction to any
number of nested logical levels.

Consider the case when p primitive CBFs {hk}pk=1 are
combined into a single constraint through M levels of
safety specifications with index ℓ ∈ [M ]. At each level, the
constraints are combined via pℓi -choose-rℓi logic to create pℓ

new safety constraints, described by functions {hℓ
i}

pℓ

i=1:

h0
i (x) = hi(x), i ∈ [p],

hℓ
i(x) =

rℓi
max{hℓ−1

k (x)}k∈Iℓ
i
, i ∈ [pℓ], ℓ ∈ [M ],

h(x) = hM
1 (x),

(21)

where Iℓi denote the indices of constraints that are com-
bined to obtain constraint i at level ℓ, with Iℓi ⊆ [pℓ−1],
|Iℓi | = pℓi ≤ pℓ−1 for all i ∈ [pℓ], ℓ ∈ [M ]. With the function
h obtained at the last level, the safe set C is defined in (2).
We summarize our findings with the following theorem.

Theorem 2. (Nested Logic Safety): Consider the system (1).
Let h be constructed from a multi-level nested logical com-
bination of primitive CBFs {hk}pk=1 as in (21). If h is a
combinatorial CBF for (1), then the set C in (2) is safe.

In addition, any state feedback controller k : Rn → Rm,
u = k(x), that is continuous and satisfies (16) on a neigh-
borhood D ⊃ C renders the set C forward invariant. The
CBF-QP (18) is one such controller. ■

We omit the proof for brevity. It follows the same structure
as Theorem 1 and proceeds by induction on the nesting
levels. The key idea is that the subgradient set can eventually
be expressed in terms the gradients of the primitive CBFs.
Hence, nested logic introduces no additional complexity
beyond redefining the pivot function h.

We emphasize that, despite encoding nested logical safety
requirements, our formulation requires only the original p
primitive constraints. This eliminates the combinatorial blow-
up in the number of combinations and significantly reduces
the problem size compared to a naive implementation.

Remark 2 (Logical Composition of MCBFs). We have
described logical compositions starting from primitive scalar
CBFs. The same ideas naturally extend to MCBFs, which
include scalar CBFs as a special case. In this setting, the role
of sorting primitive functions is played by sorting the eigen-
values of the primitive MCBFs, {Hk}pk=1. In this framework,
each MCBF can be interpreted as the first level in a nested
CBF: a MCBF corresponds to enforcing a minimum (AND)
over its eigenvalues, while an indefinite-MCBF corresponds
to enforcing a maximum (OR). A detailed analysis and full
technical treatment of this setting are left for future work. •

V. SIMULATION

In this section, we illustrate our results using a multi-
agent patrolling problem. Consider two separated L-shaped
regions, L1, L2 ⊂ R2, as shown in Fig. 3, that are monitored
by N = 11 agents. Each agent follows the dynamics:

ẋj = uj , j ∈ [N ] (22)

and is assigned a desired patrolling controller:

kd,j(x, t) =
[
κj

(
xd,j(t)− xj

)
+ ẋd,j(t), 0

]⊤
, (23)

where xd,j(t) = Aj sin(ωjt) is the desired patrolling trajec-
tory, with κj , Aj , ωj > 0 denoting the proportional gain, mo-
tion amplitude, and patrolling frequency, respectively. Here,
heterogeneity among the agents is abstracted by varying their
patrolling frequency, reflecting their differences in capability.

To ensure robust monitoring against errors in sen-
sor measurements, agent failures, etc., we require at
least four agents to remain within each region L1 and
L2 at all times. To enforce such requirement using
Boolean compositions, we would need to consider a total
of

∑11
j=4

(
11
j

)∑2
i=1

(
2
i

)
= 1816× 3 = 5448 combinations,

which would not be computationally practical. Therefore, we
define the following functions based on the proposed method:

hL1(xj) = min
{
min{hk(xj)}4k=1, max{hk(xj)}6k=5

}
,

hL2
(xj) = min

{
min{hk(xj)}10k=7, max{hk(xj)}12k=11

}
,

h(x) = min
{

4
max{hL1

(xj)}11j=1,
4

max{hL2
(xj)}11j=1

}
.

(24)



Fig. 3. Simulation of a multi-agent patrolling problem where each L-
shaped region must be monitored by at least four agents at all times. Using
the proposed CBF-QP (18), this combinatorial safety constraint is ensured
in a computationally tractable manner. The code and animation are available
at https://github.com/joonlee16/combinatorial_cbf.

Here, hL1 and hL2 characterize the two L-shaped regions
using (20) from Example 3 (a 2-choose-2 combination of 4-
choose-4 and 2-choose-1). If hL1

(xj) ≥ 0 or hL2
(xj) ≥ 0,

then agent j’s position resides within the L1 or L2 region,
respectively. Using 11 instances of hL1 and hL2 (one per
agent), we construct the combinatorial CBF h as given
in (24) (a 2-choose-2 combination of 11-choose-4). The con-
dition h(x) ≥ 0 ensures that at least four agents are in each
region simultaneously. By Theorem 2, we can enforce safety
through the CBF-QP (18) with only p = 132 constraints.

We simulated the motions of the agents using the dynam-
ics (22), the CBF-QP (18), and the p-choose-r CBF (24).
Snapshots for t ∈ [0, 50] are shown in Fig. 3, with colored
arrows indicating agents moving into and out of the L-shaped
regions. Because each region must always be covered by at
least four agents, at most three agents can be outside both
regions at any time. As shown in the figure, this constraint
is satisfied throughout the simulation.

VI. CONCLUSION

We have developed a framework for the logical composi-
tion of CBFs and MCBFs that extends beyond simple AND
formulations. The proposed combinatorial CBFs not only
address p-choose-r safety constraints but also their nested
logical combinations. Similar to the standard AND case,
our formulation enforces safety through multiple inequalities,
thereby avoiding the nonsmoothness issues associated with
logical operations. The key idea is to correctly identify the
safety function via a sorting-based argument and utilize it
as a pivot in the barrier conditions. Our future work will
explore how to handle the feasibility issue arising when CBF
conditions must hold outside their original safe sets and the
compatibility issue arising in the intersection of their sets.
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